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ABSTRACT

For a stochastic epidemic of the type considered by Bailey (1] and

Kendall [3], Daniels [2] showed that "when the threshold is large but

the population size is much larger, the distribution of the number remain-

ing uninfected in a large epidemic has approximately the Poisson form."

A simple, intuitive proof is given for this result without use of Daniels'

assumption that the original number of infectives is "small". The proof

is based on a construction of the epidemic process which is more explicit

than the usual description.
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ON THE ASYMPTOTIC DISTRIBUTION OF THE SIZE O

A STOCHASTIC PIDDrIC

1. Introduction

Consider a population which at time t - 0 consists of X(O) - n

healthy individuals and Y(O) - a individuals with a contagious infection.

An epidemic in such a population is often modeled by a continuous-time Narkov

process as follows. (See, for example, Sailey (1] or Kendall [31.) If

X(t) and Y(t) are the numbers of healthy individuals and infectious

individuals, respectively, present at time t, then the transition

probabilities are given by

P{(X(t+6),Y(t+6)) - (x',y')j(X(t),Y(t)) - (x,y))

- xy6 + o(8) for (x',y') - (x-l,y+l)

- py6 + o(S) for (x',y') = (x,y-l)

- l-xy6-1Py6+o(6) for (x'y') - (X.y)

The transitions listed represent the infection of a healthy individual,

the removal of an infectious individual from the population, and "no change",

respectively. All other possible transitions in [t.t+dj are assumed to

have collective probability o(S). The positive constant P is variously

called the threshold or the relative removal rate of the epidemic.

Note that states of the form (x,O) are absorbing, so that no more

transitions occur after the last infectious Individual has been remved.

Absorption at (x,O) means that x individuals have escaped infection

at the end of the epidemic and that X(e) x z, wbre () a i4a X(t). It
t 0-

is easy to see that, with probability one, sam such absorbin state is



reached eventually. Most of the work on this stochastic epidemic model

has been directed toward finding the distribution of the number of new

infections occurring during the course of the epidemic. This is equivalent

to finding the distribution of the absorbing state. See Nagaev and Startsev

(41 for an asymptotic analysis of limiting cases other than the one

considered in this paper.

Under the assumption that Y(O) - m is "small", Daniels (2] shows

that "when the threshold is large but the population size is much larger,

the distribution of the number remaining uninfected in a large epidemic

has approximately the Poisson form with deterministic mean ne- n / P . " However,

the asymptotic approximations used by Daniels in obtaining this result are

not very enlightening, and he speculates that "there must be a direct argu-

ment in terms of the epidemic process itself to explain this Poissonlike

behavior."

This paper gives a rather intuitive proof of Daniels' result. In

addition, the assumption that m is small is dispensed with. The proof is

based on a construction of the epidemic process which is more explicit than

the usual description given above.

2. Construction of the Epidemic Process

Let the n originally healthy individuals be indexed by 1, 1 < I < n,

and let the m originally infectious individuals be indexed by J,

1_ S C m. Let r Jm and {r IJa be i.i.d. random variables with

density pe "Pt on (O.0). Individual j in the original infectious group

A
will remain infectious for r time units before removal from the population.

Individual i in the original healthy group will remin infectious for ri

time units If he becomes infected.



Let cy1) be I.IA. random variables, with density e-t on

(0..), Independent of the r Is ad ri's. The variable h~ will be

thought of as the "resistance to Infection" of Individual i In the

original healthy group. Let {()) h be the associated order statistics,

(k) k-

Nov let the epidemic process proceed as follows.* The originally

infected individual j remains in the population for r1 time units,

after which he is removed. The healthy individual I accumlates "exposure

to infection" at a rate equal to the number of Infected individuals present.

When the total exposure to infection of healthy Individual I reaches tv

individual i becomes infected and then re mains in the population for an

additional ri time units before removal.

it remains to be shown that the resulting process is Harkov with

the correct transition probabilities. Suppose (X~t).Y(t)) -~ (x~y). The

probability that a particular infected individual is removed in the time

interval [t,t+6J is p6 + o(6) because the distribution of the r 'a and

r 's has constant hazard rate p. The probability that exactly one of

the y Infected individuals is remved in [t,t+61 Is therefore pyfi + o(S).

The probability that a particular one of the x healthy Individuals will

become infected in [t~t+61 in y6 + o(6), so that the probability that

exactly one of the healthy individuals become infected Is xy8 + o(6). It

follows that the transition probabilities are as desired. The Narkov property

follows from the uemoryless property of the exponential distribution.

Let v be the nuber of new infection* occurring during the course of

the epidemic. If t(1  r then all originally Infectious individuals

are removed before the resistance to infection of any healthy individual has

3



been exceeded, so that V -0. Otherwise, the originally healthy

individual associated with Z,,) becomes the first new infection, and

v > 1. An easy Induction argument show that v + 1 is the smallest k,

1< k<na, for which

L (k) > Ir+ Ir'

If this inequality does not hold for any k, .1 < k < n, then V n .

Define

R- r + (i)

Then R is the amount of "exposure to Infection" withstood by those

individus who remain healthy at the end of the epidemic, and X(-) -n -v

is the number of I I'a greater than Rt.

3. Statement of the Theorem and an Outline of the Proof

Consider a sequence of epidemics with parameters NO mik9 and k

1 < k < -. Let Vkbe the number of new infections in a realization of

the k-th epidic, so that Xk(as) - -k Vk is the number of individuals

who escape Infection.

Theorem. If n k Pk * and

then Zk(w) converges In distribution to a Poisson random variable with

mean b.

I4

A7



Suppressing the subscript k, we can suarize the proof as follows.

The fact that p is o(nm) implies that, with high probability, all but

a tiny fraction of the population becomes infected. Thus, R will be close
I n

to I r + I ri, which is in turn close to (arn)/p with high probability.
jl iml

If I is close enough to (mun)/p, then X(w) will equal the number of iIs

which are greater than (.41)/p. The number of Zi's greather than (m+n)/p has

the distribution Binomial (n,e- (U +n)/P), which converges in distribution to

Poisson (b).

4. Proof of the Theorem

The subscript k will again be suppressed.

Taking logarithms in ne- (m + n )/p - b yields

n4m
log n - -- log bP

M+n
so that p 1v n. Thus, p is o(=+n), but (u+n)y  is o(p) forlog n"

0 <1.

Lema 1. Let 0 < £ < 1 be given. If p< E2(m+n), then

P{X(-) > c(u+n)} < I < m<

Proof of Lemma 1.

As in Kendall (3], we can view the population of infected individuals

as a continuous-time birth-and-death process with a variable birth-rate.

The ratio of death-rate to birth-rate is p/X(t), which is less than

p/(c(u+n)), until X(t) < E(m+n). The probability that a birth-and-death

i'5



process starting at a and with a death-rate to birth-rate ratio q < 1

is ev-r absorbed at zero is q.

Liea 2. Let 0 < e < 1. For n sufficiently large,

Proof of Lemma 2.

By Lemma 1, R is greater than the sum of the first (1-c) (miii)
terms of r(1) (2) ()
terms ~ ~ ~ , of., (Al^ I.. with probability greater

than (1-c) for sufficiently large ni. The sum of the first (l-e)(mft)

2
terms has mean (1-c) (m+n) /P and variance (1-c) (m+n) /p . The Chobyshev

inequality now implies the lemma.

Lemma 3. Let 0 < e < 1. For n sufficiently large,

PfX() > n' 1<3e

Proof of Lemma 3.

The number of A i s which are greater than (l-2c) (m+n)Ip is

Binomial (n,e-(l2)(ufl)/p ). This distribution has mean

ne712)mn/ 16nb(-0wb 1-cn2

Application of Lemma 2 and the Karkov inequality finishes the proof of

Lemma 3.

From Liea 3, it is easy to see that X(ft) is o() In probability.

Thus, except on a set of small probability, R. ts greater then the sum of

6



()(2) (n)the first a + n -r terms of {G*,r 2,... r () ,r ,*..,r

R is of course less than or equal to the sum of all the terms. An

argument like the proof of Lema 2 shows that, with probability approach-

ing one,

min (k)2/3 < R )2/3

P P P P

The number of Z i's greater than

_. .L _ 
z2 / 3

S- p

is~n 2/3
is distributed as a Binomial (n,exp{- ) which has mean

Thus, with probability approaching one, X(ae) is less than a

Binomial (n, exp{- -t- + p - 1) random variable
P p

and greater than

2/3
Binomial (n, exp{- - -~ }) random variable

p p

Since both of these distributions converge in law to a Poisson with mean

b, the theorem is proved.
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